brief todo
More...
#include <Geodesic_distances_generation.hpp>
template<class Graph, class LandmarkFunctor, class LandmarkInfo_functor>
class SBL::CADS::T_Geodesic_distances_generation< Graph, LandmarkFunctor, LandmarkInfo_functor >
brief todo
details todo.
◆ adjacency_iterator
◆ Distance_number_type
◆ Landmark_functor
◆ vertex_descriptor
◆ Vertex_handle
◆ vertex_iterator
◆ vertices_size_type
◆ Color
Enumerator |
---|
WHITE | |
GRAY | |
BLACK | |
◆ T_Geodesic_distances_generation() [1/2]
◆ T_Geodesic_distances_generation() [2/2]
◆ ~T_Geodesic_distances_generation()
◆ count_landmarks()
Graph::vertices_size_type count_landmarks |
this is useful to preallocate the result to structure to be used in k_dijkstra_on_landmarks
◆ k_dijkstra_on_landmark()
void k_dijkstra_on_landmark |
( |
vertex_descriptor |
origin, |
|
|
unsigned |
k, |
|
|
std::ostream & |
result, |
|
|
std::ostream & |
landmarksInfoOutput |
|
) |
| |
◆ k_dijkstra_on_landmarks()
void k_dijkstra_on_landmarks |
( |
unsigned |
k, |
|
|
std::ostream & |
result, |
|
|
std::ostream & |
landmarksInfoOutput |
|
) |
| |
main function computes the k shortest distances to other landmarks from each landmark and outputs the result to an ostream it uses for each landmark a truncated version of dijkstra's algorithm that stops when k other landmarks where visited the greedy-optimal nature of dijkstra's algorithm guarantees that the distances to these k landmarks are indeed the shortest ones